Generative adversarial networks review in earthquake-related engineering fields

نویسندگان

چکیده

Abstract Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, advantageous way to generate reliable synthetic data that represent actual samples’ characteristics, providing a handy augmentation tool. Indeed, in many practical applications, obtaining significant number of high-quality information is demanding. Data generally based on artificial intelligence (AI) machine data-driven models. The DL GAN-based approach for generating seismic signals revolutionized the current paradigm. This study delivers critical state-of-art review, explaining recent research into AI-based GAN generation ground motion or events, also with comprehensive insight seismic-related geophysical studies. may be relevant, earth planetary science, geology oil gas exploration, other hand assessing response buildings infrastructures, detection tasks, general engineering applications. Furthermore, highlighting strengths limitations studies applied seismology help guide efforts next future toward most promising directions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Evolutionary Generative Adversarial Networks

Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performa...

متن کامل

Unrolled Generative Adversarial Networks

We introduce a method to stabilize Generative Adversarial Networks (GANs) by defining the generator objective with respect to an unrolled optimization of the discriminator. This allows training to be adjusted between using the optimal discriminator in the generator’s objective, which is ideal but infeasible in practice, and using the current value of the discriminator, which is often unstable a...

متن کامل

Annealed Generative Adversarial Networks

Generative Adversarial Networks (GANs) have recently emerged as powerful generative models. GANs are trained by an adversarial process between a generative network and a discriminative network. It is theoretically guaranteed that, in the nonparametric regime, by arriving at the unique saddle point of a minimax objective function, the generative network generates samples from the data distributi...

متن کامل

Steganographic Generative Adversarial Networks

Steganography is collection of methods to hide secret information (“payload”) within non-secret information (“container”). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of Earthquake Engineering

سال: 2023

ISSN: ['1573-1456', '1570-761X']

DOI: https://doi.org/10.1007/s10518-023-01645-7